Flexibilization of thermal power plants - need of hour

SIEMENS

Ingenuity for life

CERC, 29th July 2019

Sandeep Chittora & Rajeev Rajdeva, Siemens Limited

Restricted © Siemens AG 2018

Market requirements: Changed operational regimes require highly flexible products

Restricted © Siemens AG 2018

Page 2

19.03.2019

Sandeep Chittora

Power Generation Services

SIEMENS

Flexibility Road Map

Controls and Optimization	Lifetime consumption & Monitoring	Retrofit and Modernization
 Advanced Process Control Temperature Control Optimization Soot Blower Optimization Combustion Optimization Frequency Control Fast Ramp 	 Fatigue Monitoring Equivalent Operating hours Performance Monitoring Last Stage Blade Vibration 	 Steam Turbine Modernization Boiler Retrofit Fast Start

Technical Minimum + Higher Ramps + Efficiency

Restricted © Siemens AG 2018 Page 3 19.03.2019

Sandeep Chittora

Measures for fast load ramping Overview

Extraction

Steam Valves

HP Feed Water Heaters 100% HP Feed Water Heater Bypass

3 Condensate stop

Restricted © Siemens AG 2018

Page 4

Steam

Generator

19.03.2019

Sandeep Chittora

LP Feed Water

Heaters

 \mathbf{G}

Condenser

Condensate

Fast condensate

control station

Pumps

LP LP

Ρ

 Φ

3

HP

Fast control butterfly

Feed Water

Pumps

valves

 $\langle \mathbf{A} \rangle$

SIEMENS

"Condensate throttling" controls storages in the water steam cycle to increase ramp rates

Iskenderun, Neurath, Luenen and NTPC Dadri

- a. Enlarge storage volume
- b. Fast condensate control valve
- c. Fast control valves in LP extractions

NTPC Dadri Stage II – Unit #6 490 MW

Power Generation Services

SIEMENS Ingenuity for life Let P3000 Condensate Throttling increase your profitability by providing state-of-the-art frequency response (2/3)

Frequency Response without P3000 Condensate Throttling :

Frequency Response including P3000 Condensate Throttling (Efficiency):

Restricted © Siemens AG 2018

Page 6 1

19.03.2019

Sandeep Chittora

Let P3000 Condensate Throttling increase your profitability by providing state-of-the-art frequency response (3/3)

Frequency Response including P3000 Condensate Throttling (Efficiency): Frequency Response including P3000 Condensate Throttling (Load Additional):

Restricted © Siemens AG 2018

Page 7 19

19.03.2019

Sandeep Chittora

Power Generation Services

SIEMENS

SPPA-P3000 Minimum Load Reduction Reduced minimum load level

Task

To upgrade the plant so that the specified minimum load level can be reduced and to make the plant capable of fast and low-stress load increases on demand in accordance with market requirements.

Solution

- · Use of robust state space controller for unit control
- Adaptation, optimization and setting of lower-level controls for new minimum load level
- Adaptation or addition of control sequences, burner and mill scheduler
- · Provision of additional instrumentation where necessary

Benefit e.g. 500,000 €/a → Benefit calculation

- Reduced financial losses during off-peak periods
- Faster response to increased load demands as unit does not need to be shut down
- Avoidance of unnecessary startups and shutdowns

Restricted © Siemens AG 2018

Page 8 19.03.2019

Sandeep Chittora

Power Generation Services

Minimum Load Reduction

Old minimum

sustainable load

Load

optimization of lower-level controls.

SIEMENS Ingenuity for life

40% Technical Minimum is Possible

Cond.	M %	Ash%	C %	H %	N %	S %	0%	GCV (kcal/kg)	VM%	Ash %
Air dried	4.03	37.29	43.63	3.26	1.01	0.35	10.43	3000	22%	35%

Restricted © Siemens AG 2018

Page 9

19.03.2019

Sandeep Chittora

Power Generation Services

Transient Operation (Ramp Up / Ramp Down)

increased temperature gradient results increased life consumption

Restricted © Siemens AG 2018

Page 10 19.03.2019

Sandeep Chittora

SIEMENS

Influence on Ramps on Temperature Transient

19.03.2019

Sandeep Chittora

Power Generation Services

SPPA-P3000 Temperature Optimizer Increased steam temperatures

Task

To achieve maximum steam temperature without violation of material limits

Solution

- Robust, easy to parameterize and adaptive state space controller with observer
- Where needed, use of entire control range through to injection into saturated steam
- · Use on startup/shutdown and over the entire load range
- Use of flue gas recirculation and biflux or triflux valves to control reheat steam temperature

Benefit, e.g. 180,000 €/a → Benefit calculation

Increased efficiency thanks to

- Higher steam temperatures
- Reduction in reheater attemperation

The Temperature Optimizer solution increases the efficiency through higher steam temperatures and the use of appropriate control elements for reheater temperature.

Restricted © Siemens AG 2018

Page 12 19.03.2019

Sandeep Chittora

Power Generation Services

SIEMENS

Power on Demand Reduction of Wall Thickness to Improve Start Up & Cycling Capabilities

Sandeep Chittora

Power Generation Services

SIEMENS

Measures to improve transient operation

ST Warm Standby Operation to prepare for fast start-up

Technology

- Electrical heating system for ST in turning gear
- Maintains rotor shaft temperature at warm startup conditions

Benefit

- Significant reduction of startup time
 - > 60 min. earlier power production
- Reduction of EOH consumption per start
- Less energy is bypassed to condenser
 - · Reduced costs per start up

Electric heating coils to keep HP/ IP Turbine casing and shaft in warm start conditions

Restricted © Siemens AG 2018 Page 14 19.03.2019

Sandeep Chittora

Power Generation Services

SIEMENS

Key Takeaway

- Lower Technical Minimum is better operation than two shift operation
- Subcritical fleet is more suitable for flexible operation with respect to loss in performance
- Lower Technical Minimum with advanced control systems is possible, unit specific changes needs to be applied
- Means of improving part load efficiency by upto 1% are available
- Maintenance planning is to be adapted based on actual life consumption during flexible operation
- Thermal power utilities will play a key role in Indian grid for renewable grid

Further I&C solutions for flexible operation Selected references

Frequency & Dispatch Control

Altbach, Germany 420 MW, hard coal: 5% in 30 s up to 100% load (with turbine & condensate throttling + partial deactivation of HP preheaters)

Dingzhou, China 600 MW, hard coal: Boiler delay reduced from 180s to 40s for load ramps up to 4%/min (with throttling)

Dadri, India 490 MW 35 MW (~7%) in 20 s (with condensate throttling + HP reserve)

Reliable and efficient start-ups

Franken I, Germany 383MW, gas, built 1973: 20% reduction of start-up costs

Reduced minimum load

Steag Voerde, Germany 700 MW, hard coal, built 1985: Minimum sustainable load w/o oil support and bypass reduced from 280 (40%) to 140 MW (20 %)

Increased Maximum Load

Callide, Australia 420 MW, hard coal: Max. load +10 % 1,400 h/year max. load through controlled HP bypass deactivation

Restricted © Siemens AG 2018 Page 16 19.03.2019

Sandeep Chittora

Power Generation Services